
[image: smals logo op grootte Word docs]

[image: \\information.intranext.smals.be@SSL\DavWWWRoot\SRC\com\lt\Documents\Logo\Smals vzw-asbl.jpg]			

	Oauth2 Cookbook

DOCUMENT HISTORY
	Version
	Date
	Author
	Description of changes / remarks

	0.01
	05/06/2018
	Olivier Houyoux
	Draft version.

	0.1
	16/07/2018
	Adrien Clerbaut
	Review

TABLE OF CONTENT
[bookmark: _Toc220984215][bookmark: _Toc443808027][bookmark: _Toc446990915][bookmark: _Toc166912405][bookmark: _Toc190076395][bookmark: _Toc128199817][bookmark: _Toc190076416]Introduisez vos titres / sous-titres / textes dans le corps du document (pas dans la table des matières).
Faites une mise à jour de la table des matières (clic droit sur la table des matières puis <Update Field>) avant de publier une nouvelle version
1.	Introduction	3
2.	Definitions	4
3.	OAuth grant flows	5
3.1.	Authorization code grant flow	5
3.2.	Implicit grant flow	6
3.3.	Client credentials grant flow	7
4.	Obtaining Authorization	8
4.1.	Technical requirements	8
4.2.	Authorization code grant flow	8
4.3.	Implicit grant flow	12
4.4.	Client Credentials grant flow	15
4.5.	Client Authentification	17
5.	Obtaining user informations using OpenID	18
5.1.	OpenId Connect	18
5.2.	Authorization code grant flow with openid	19
5.3.	Implicit grant flow with openid	23
5.4.	Accessing userinfo endpoint	26
6.	OAuth for desktop and mobile applications	28
6.1.	Initialize transaction	28
6.2.	Load access token into the token vault	29
6.3.	Fetch access token from the token vault	29
7.	Token introspection	30
7.1.	Introspection request	30
7.2.	Introspection response	30
8.	Environments	32
8.1.	Integration	32
8.2.	Acceptation	32
8.3.	Production	32
9.	External document references	32
[bookmark: _Toc519847129]Introduction
In the traditional client-server authentication model, the client requests an access-restricted resource (protected resource) on the server by authenticating with the server.
In order to provide third-party applications access to restricted resources, the resource owner shares its credentials with third party.

This creates several problems and limitations:

· Third-party applications are required to store the resource owner's credentials for future use, typically a password in clear-text.

· Servers are required to support password authentication, despite the security weaknesses inherent in passwords.

· Third-party applications gain overly broad access to the resource owner's protected resources, leaving resource owners without any ability to restrict duration or access to a limited subset of resources.

· Resource owners cannot revoke access to an individual third party revoking access to all third parties, and must do so by changing the third party's password.

· Compromise of any third-party application results in compromise of the end-user's password and all of the data protected by that password.

OAuth addresses these issues by introducing an authorization layer and separating the role of the client from that of the resource owner.
In OAuth, the client requests access to resources controlled by the resource owner and hosted by the resource server, and is issued a different set of credentials than those of the resource owner.

Instead of using the resource owner's credentials to access protected resources, the client obtains an access token, a string denoting a specific scope, lifetime, and other access attributes.
Access tokens are issued to third-party clients by an authorization server with the approval of the resource owner.

The client uses the access token to access the protected resources hosted by the resource server.

OpenID Connect 1.0 is a simple identity layer on top of the OAuth 2.0 protocol.
It enables Clients to verify the identity of the End-User based on the authentication performed by an Authorization Server, as well as to obtain basic profile information about the End-User in an interoperable and REST-like manner.

[bookmark: _Toc519847130]Definitions
The OAuth 2.0 authorization framework enables a third-party application to obtain limited access to an HTTP service, either on behalf of a resource owner by orchestrating an approval interaction the resource owner and the HTTP service, or by allowing the third-party application to obtain access on its own behalf.

OAuth defines several terms used throughout this document:

resource owner

An entity capable of granting access to a protected resource. When the resource owner is a person, it is referred to as an end-user.

resource server

The server hosting the protected resources, accepting and responding to protected resource requests using access tokens.

client

An application making protected resource requests on behalf of the resource owner and with its authorization. The term "client" does not imply any particular implementation characteristics (e.g., whether the application executes on a server, a desktop, or other).

client identifier

The authorization server issues the registered client a client identifier -- a unique string representing the registration information provided by the client.
The client identifier is not a secret; it is exposed to the resource owner and MUST NOT be used alone for client authentication. The client identifier is unique to the authorization server.

authorization server

The server issuing access tokens to the client after successfully the resource owner and obtaining authorization.

redirection endpoint

After completing its interaction with the resource owner, the authorization server directs the resource owner's user-agent back to the client. The authorization server redirects the user-agent to the client's redirection endpoint previously established with the authorization server during the client registration process or when making the authorization request.

The redirection endpoint URI MUST be an absolute URI as defined by RFC3986 section 4.3. The endpoint URI MAY include an application/x-www-form-urlencoded" formatted query component which MUST be retained when adding additional query parameters. The endpoint URI MUST NOT include a fragment component.

access token

Access tokens are credentials used to access protected resources. An access token is a string representing an authorization issued to the client. The string is usually opaque to the client. Tokens represent specific scopes and durations of access, granted by the resource owner, and enforced by the resource server and authorization server.

The token is a string representing the authorization granted to the client by the resource owner. The string is opaque to the client.

The access token provides an abstraction layer, replacing different authorization constructs (e.g., username and password) with a single token understood by the resource server. This abstraction enables issuing access tokens more restrictive than the authorization grant used to obtain them, as well as removing the resource server's need to understand a wide range of authentication methods.

access token scope

The authorization and token endpoints allow the client to specify the scope of the access request using the "scope" request parameter. In turn, the authorization server uses the "scope" response parameter to inform the client of the scope of the access token issued.

The value of the scope parameter is expressed as a list of space-delimited, case-sensitive strings. The strings are defined by the authorization server. If the value contains multiple space-delimited strings, their order does not matter, and each string adds an additional access range to the requested scope.

If the client omits the scope parameter when requesting authorization, the authorization server processes the request using the pre-defined default values associated with the client.

refresh token

Refresh tokens are credentials used to obtain access tokens. Refresh tokens are issued to the client by the authorization server and are used to obtain a new access token when the current access token becomes invalid or expires, or to obtain additional access tokens with identical or narrower scope (access tokens may have a shorter lifetime and fewer permissions than authorized by the resource owner). Issuing a refresh token is optional at the discretion of the authorization server. If the authorization server issues a refresh token, it is included when issuing an access token.

A refresh token is a string representing the authorization granted to the client by the resource owner. The string is opaque to the client.
The token denotes an identifier used to retrieve the authorization information. Unlike access tokens, refresh tokens are intended for use only with authorization servers and are never sent to resource servers.

client assertion

In this implementation of the OAuth2 protocol, the client assertion is a JSON Web Token or compact, URL-safe means of representing client authentication information.
[bookmark: _Toc519847131]OAuth grant flows
[bookmark: _Toc519847132]Authorization code grant flow
The authorization code is obtained by using an authorization server as an intermediary between the client and resource owner.
Instead of authorization directly from the resource owner, the client the resource owner to an authorization server (via its user-agent) which in turn directs the resource owner back to the client with the authorization code.

Before directing the resource owner back to the client with the authorization code, the authorization server authenticates the resource owner and obtains authorization.
Because the resource owner authenticates with the authorization server, the resource credentials are never shared with the client.

The authorization code provides a few important security benefits, such as the ability to authenticate the client, as well as the transmission of the access token directly to the client without passing it through the resource owner's user-agent and potentially exposing it to others, including the resource owner.
[image:]

[bookmark: _Toc519847133]Implicit grant flow
The implicit grant is a simplified authorization code flow optimized for clients implemented in a browser using a scripting language such as JavaScript. In the implicit flow, instead of issuing the client authorization code, the client is issued an access token directly (as the result of the resource owner authorization).
The grant type is implicit, as no intermediate credentials (such as an authorization code) are issued (and later used to obtain an access token).

When issuing an access token during the implicit grant flow, the authorization server does not authenticate the client. In some cases, the client identity can be verified via the redirection URI used to deliver the access token to the client. The access token may be exposed to the resource owner or other applications with access to the resource owner's user-agent.

Implicit grants improve the responsiveness and efficiency of some clients (such as a client implemented as an in-browser application), since it reduces the number of round trips required to obtain an access token.
[image:]

[bookmark: _Toc519847134]Client credentials grant flow
The client credentials (or other forms of client authentication) can be used as an authorization grant when the authorization scope is limited to the protected resources under the control of the client, or to protected resources previously arranged with the authorization server. Client credentials are used as an authorization grant typically when the client is acting on its own behalf (the client is also the resource owner) or is requesting access to protected resources based on an authorization previously arranged with the authorization server.

[image:]
[bookmark: _Toc519847135]Obtaining Authorization
[bookmark: _Toc478113857][bookmark: _Toc478114593][bookmark: _Toc519847136]Technical requirements
[bookmark: _Toc478113858][bookmark: _Toc478114594]HTTP
The endpoints and methods described hereafter all use HTTP as application-level protocol.
[bookmark: _Toc478113859][bookmark: _Toc478114595]Transport Layer Security
Client applications MUST use TLS (i.e. HTTPS) communication with the authorization and resource endpoints to ensure protection of credentials and access tokens.

[bookmark: _Toc519847137]Authorization code grant flow
The authorization code grant type is used to obtain both access tokens and refresh tokens and is optimized for confidential clients.
Since this is a redirection-based flow, the client must be capable of interacting with the resource owner's user-agent (typically a web browser) and capable of receiving incoming requests (via redirection) from the authorization server.
Authorization code request
The client constructs the request URI by adding the following parameters to the query component of the authorization endpoint URI using the "application/x-www-form-urlencoded" format:

response_type
REQUIRED. Value MUST be set to "code".

client_id
REQUIRED. The client identifier as described in « Definitions ».

redirect_uri
OPTIONAL. As described in « Definitions » under « redirection endpoint ».

scope
OPTIONAL. The scope of the access request as described « Definitions » under « access token scope».

state
REQUIRED. An opaque value used by the client to maintain state between the request and callback. The authorization server includes this value when redirecting the user-agent back to the client. The parameter is used for preventing cross-site request forgery attacks.

The client directs the resource owner to the constructed URI using an HTTP redirection response, or by other means available to it via the user-agent.

For example, the client directs the user-agent to make the following HTTP request using TLS:

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz HTTP/1.1
Host: https://professionalservices.socialsecurity.be/REST/oauth/v3

The authorization server validates the request to ensure that all required parameters are present and valid.
If the request is valid, the authorization server authenticates the resource owner and obtains an authorization decision (by asking the resource owner or by establishing approval via other means).

When a decision is established, the authorization server directs the user-agent to the provided client redirection URI using an HTTP redirection response, or by other means available to it via the user-agent.
Authorization code response
If the resource owner grants the access request, the authorization server issues an authorization code and delivers it to the client by adding the following parameters to the query component of the redirection URI using the "application/x-www-form-urlencoded" format:

code
The authorization code generated by the authorization server. The authorization code expires shortly after it is issued to mitigate the risk of leaks. The client MUST NOT use the authorization code more than once. If an authorization code is used more than once, the authorization server denies the request and revokes (when possible) all tokens previously issued based on that authorization code. The authorization code is bound to the client identifier and redirection URI.

state
The exact value received from the client.

For example, the authorization server redirects the user-agent by sending the following HTTP response:

HTTP/1.1 302 Found
Location: https://client.example.com/cb?code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

The client MUST ignore unrecognized response parameters. The authorization code string size is left undefined by this specification. The client should avoid making assumptions about code value sizes.

Error response
If the request fails due to a missing, invalid, or mismatching redirection URI, or if the client identifier is missing or invalid, the authorization server SHOULD inform the resource owner of the error and MUST NOT automatically redirect the user-agent to the invalid redirection URI.

If the resource owner denies the access request or if the request fails for reasons other than a missing or invalid redirection URI, the authorization server informs the client by adding the following parameters to the query component of the redirection URI using the "application/x-www-form-urlencoded" format:

error
A single ASCII error code from the following:

invalid_request

The request is missing a required parameter, includes an invalid parameter value, includes a parameter more than once, or is otherwise malformed.

unauthorized_client

The client is not authorized to request an authorization code using this method.

access_denied

The resource owner or authorization server denied the request.

unsupported_response_type

The authorization server does not support obtaining an authorization code using this method.

invalid_scope

The requested scope is invalid, unknown, or malformed.

server_error

The authorization server encountered an unexpected condition that prevented it from fulfilling the request (needed because a 500 Internal Server Error HTTP status code cannot be returned to the client via an HTTP redirect).

temporarily_unavailable

The authorization server is currently unable to handle the request due to a temporary overloading or maintenance of the server (needed because a 503 Service Unavailable HTTP status code cannot be returned the client via an HTTP redirect).

Values for the "error" parameter MUST NOT include characters outside the set %x20-21 / %x23-5B / %x5D-7E.

error_description
Human-readable ASCII text providing additional information, used to assist the client developer in understanding the error that occurred.

error_uri
A URI identifying a human-readable web page with information about the error, used to provide the client developer with additional information about the error.

state
The exact value received from the client.

For example, the authorization server redirects the user-agent by sending the following HTTP response:

HTTP/1.1 302 Found
Location: https://client.example.com/cb?error=access_denied&state=xyz
Access token request
The client makes a request to the token endpoint by sending the following parameters using the "application/x-www-form-urlencoded" format with a character encoding of UTF-8 in the HTTP request entity-body:

grant_type
REQUIRED. Value MUST be set to "authorization_code".

code
REQUIRED. The authorization code received from the server.

redirect_uri
REQUIRED, if and only if the "redirect_uri" parameter was included in the authorization request and their values MUST be identical.

client_assertion_type
REQUIRED. Value must be set to “urn:ietf:params:oauth:client-assertion-type:jwt-bearer”

client_assertion
REQUIRED. A signed JWT that authenticates the client with the authorization server as described in RFC 7519. The content of the JWT is described in section “Client authentification”.

For example, the client makes the following HTTP request using TLS:

POST /token HTTP/1.1
Host: https://professionalservices.socialsecurity.be/REST/oauth/v3/token
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb&client_assertion_type=…&client_assertion=
Access token response
If the access token request is valid and authorized, the authorization server issues an access token and optional refresh token.
If the request client authentication failed or is invalid, the authorization server returns an error response.

access_token
The access token issued by the authorization server.

token_type
The type of the token issued. The token type is “Bearer”

expires_in
The lifetime in seconds of the access token. For example, the value "3600" denotes that the access token will expire in one hour from the time the response was generated. If omitted, the authorization server SHOULD provide the expiration time via other means or document the default value.

refresh_token
OPTIONAL. The refresh token, which can be used to obtain new access tokens using the same authorization grant as described in “Refreshing access token”

scope
OPTIONAL, if identical to the scope requested by the client; otherwise, REQUIRED.

An example successful response:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
"access_token":"2YotnFZFEjr1zCsicMWpAA",
"token_type":"Bearer",
"expires_in":3600,
"refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA"
}

An example unsuccessful response:

HTTP/1.1 400 Bad Request
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
"error":"invalid_request",
"error_description":"Request was missing the client_id parameter.",
"error_uri":”https://tools.ietf.org/html/rfc6749”,
}
Refreshing access token
If the authorization server issued a refresh token to the client, the client makes a refresh request to the token endpoint by adding the following parameters using the "application/x-www-form-urlencoded" with a character encoding of UTF-8 in the HTTP request entity-body:

grant_type
REQUIRED. Value MUST be set to "refresh_token".

refresh_token
REQUIRED. The refresh token issued to the client.

scope
OPTIONAL. The scope of the access request.The requested scope MUST NOT include any scope not originally granted by the resource owner, and if omitted is treated as equal to the scope originally granted by the resource owner.

client_assertion_type
REQUIRED. Value must be set to “urn:ietf:params:oauth:client-assertion-type:jwt-bearer”

client_assertion
REQUIRED. A signed JWT that authenticates the client with the authorization server as described in RFC 7519. The content of the JWT is described in section “Client authentification”.

For example, the client makes the following HTTP request using transport-layer security:

POST /token HTTP/1.1
Host: https://professionalservices.socialsecurity.be/REST/oauth/v3
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA&client_assertion_type=…&client_assertion=…

If valid and authorized, the authorization server issues an access token. If the request failed verification or is invalid, the authorization server returns an error response (See “Access token response”).

The authorization server MAY issue a new refresh token, in which case the client MUST discard the old refresh token and replace it with the new refresh token.
The authorization server MAY revoke the old refresh token after issuing a new refresh token to the client.
If a new refresh token is issued, the refresh token scope is identical to that of the refresh token included by the client in the request.
[bookmark: _Toc519847138]Implicit grant flow
The implicit grant type is used to obtain access tokens (it does not support the issuance of refresh tokens) and is optimized for public clients known to operate a particular redirection URI.
These clients are typically implemented in a browser using a scripting language such as JavaScript.

Since this is a redirection-based flow, the client must be capable of interacting with the resource owner's user-agent (typically a web browser) and capable of receiving incoming requests (via redirection) from the authorization server.

Unlike the authorization code grant type, in which the client makes separate requests for authorization and for an access token, the client receives the access token as the result of the authorization request.

The implicit grant type does not include client authentication, and relies on the presence of the resource owner and the registration of the redirection URI.
Because the access token is encoded into the redirection URI, it may be exposed to the resource owner and other applications residing on the same device.
Authorization request
The client constructs the request URI by adding the following parameters to the query component of the authorization endpoint URI using the "application/x-www-form-urlencoded" format:

response_type
REQUIRED. Value MUST be set to "token".

client_id
REQUIRED. The client identifier as described in « Definitions ».

redirect_uri
OPTIONAL. As described in « Definitions » under « redirection endpoint ».

scope
OPTIONAL. The scope of the access request as described « Definitions » under « access token scope».

state
REQUIRED. An opaque value used by the client to maintain state between the request and callback. The authorization server includes this value when redirecting the user-agent back to the client. The parameter is used for preventing cross-site request forgery attacks.

The client directs the resource owner to the constructed URI using an HTTP redirection response, or by other means available to it via the user-agent.

For example, the client directs the user-agent to make the following HTTP request using TLS:

GET /authorize?response_type=token&client_id=example:client&state=xyz HTTP/1.1
Host: https://professionalservices.socialsecurity.be/REST/oauth/v3

The authorization server validates the request to ensure that all required parameters are present and valid. The authorization server also verifies that the optional redirection URI (if present in request) to which it will redirect the access token matches a redirection URI registered by the client.

If the request is valid, the authorization server authenticates the resource owner and obtains an authorization decision (by asking the resource owner or by establishing approval via other means).

When a decision is established, the authorization server directs the user-agent to the provided client redirection URI using an HTTP redirection response, or by other means available to it via the user-agent.
Access token response
If the resource owner grants the access request, the authorization server issues an access token and delivers it to the client by adding the following parameters to the fragment component of the redirection URI using the "application/x-www-form-urlencoded" format:

access_token
The access token issued by the authorization server.

token_type
The case insensitive type of the token issued as described in RFC6749 section 7.1.

expires_in
The lifetime in seconds of the access token. For example, the value "3600" denotes that the access token will expire in one hour from the time the response was generated.

scope
The scope of the access token which is omitted if identical to the scope requested by the client.

state
The exact value received from the client.

The authorization server will NOT issue a refresh token.

For example, the authorization server redirects the user-agent by sending the following HTTP response:

HTTP/1.1 302 Found
Location: http://example.com/cb#access_token=2YotnFZFEjr1zCsicMWpAA
 &state=xyz&token_type=example&expires_in=3600

The client MUST ignore unrecognized response parameters and avoid making assumptions about value sizes.

Error response
If the request fails due to a missing, invalid, or mismatching redirection URI, or if the client identifier is missing or invalid, the authorization server informs the resource owner of the error and does not automatically redirect the user-agent to the invalid redirection URI.

If the resource owner denies the access request or if the request fails for reasons other than a missing or invalid redirection URI, the authorization server informs the client by adding the following parameters to the fragment component of the redirection URI using the "application/x-www-form-urlencoded" format:

error
 A single ASCII error code from the following:

invalid_request

The request is missing a required parameter, includes an invalid parameter value, includes a parameter more than once, or is otherwise malformed.

unauthorized_client

The client is not authorized to request an access token using this method.

access_denied

The resource owner or authorization server denied the request.

unsupported_response_type

The authorization server does not support obtaining an access token using this method.

invalid_scope

The requested scope is invalid, unknown, or malformed.

server_error

The authorization server encountered an unexpected condition that prevented it from fulfilling the request (this error code is needed because a 500 Internal Server Error HTTP status code cannot be returned to the client via an HTTP redirect).

temporarily_unavailable

The authorization server is currently unable to handle the request due to a temporary overloading or maintenance of the server (this error code is needed because a 503 Service Unavailable HTTP status code cannot be returned to the client via an HTTP redirect).

Values for the "error" parameter MUST NOT include characters outside the set %x20-21 / %x23-5B / %x5D-7E.

error_description
Human-readable ASCII text providing additional information, used to assist the client developer in understanding the error that occurred.

error_uri
A URI identifying a human-readable web page with information about the error, used to provide the client developer with additional information about the error.

state
The exact value received from the client.

For example, the authorization server redirects the user-agent by sending the following HTTP response:

HTTP/1.1 302 Found
Location: https://client.example.com/cb#error=access_denied&state=xyz
[bookmark: _Toc519847139]Client Credentials grant flow
The client can request an access token using only its client credentials (or other supported means of authentication) when the client is requesting access to the protected resources under its control, or those of another resource owner that have been previously arranged with the authorization server (the method of which is beyond the scope of this specification).

The client credentials grant type must only be used by confidential clients.
Authorization request and response
Since the client authentication is used as the authorization grant, no additional authorization request is needed.
Access token request
The client makes a request to the token endpoint by adding the following parameters using the "application/x-www-form-urlencoded" format with a character encoding of UTF-8 in the HTTP request entity-body:

grant_type
REQUIRED. Value MUST be set to "client_credentials".

scope
OPTIONAL. The scope of the access request.

client_assertion_type
REQUIRED. Value must be set to “urn:ietf:params:oauth:client-assertion-type:jwt-bearer”

client_assertion
REQUIRED. A signed JWT that authenticates the client with the authorization server as described in RFC 7519. The content of the JWT is described in section “Client authentification”.

 For example, the client makes the following HTTP request using
 transport-layer security (with extra line breaks for display purposes
 only):

 POST /token HTTP/1.1
 Host: https://professionalservices.socialsecurity.be/REST/oauth/v3
 Content-Type: application/x-www-form-urlencoded

 grant_type=client_credentials&client_assertion_type=…&client_assertion=…

Access token response
If the access token request is valid and authorized, the authorization server issues an access token. A refresh token is never included. If the request failed client authentication or is invalid, the authorization server returns an error response.

The response contains the following:

access_token
The access token issued by the authorization server.

token_type
The case insensitive type of the token issued as described in RFC6749 section 7.1.

expires_in
The lifetime in seconds of the access token. For example, the value "3600" denotes that the access token will expire in one hour from the time the response was generated.

An example successful response:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
"access_token":"2YotnFZFEjr1zCsicMWpAA",
"token_type":"Bearer",
"expires_in":3600
}

Error response
The authorization server responds with an HTTP 400 (Bad Request)
status code (unless specified otherwise) and includes the following
parameters with the response:

error
REQUIRED. A single ASCII [USASCII] error code from the following:

invalid_request
The request is missing a required parameter, includes an unsupported parameter value (other than grant type), repeats a parameter, includes multiple credentials, utilizes more than one mechanism for authenticating the client, or is otherwise malformed.

invalid_client
Client authentication failed (e.g., unknown client, no client authentication included, or unsupported
authentication method). The authorization server MAY return an HTTP 401 (Unauthorized) status code to indicate which HTTP authentication schemes are supported. If the client attempted to authenticate via the "Authorization" request header field, the authorization server MUST respond with an HTTP 401 (Unauthorized) status code and include the "WWW-Authenticate" response header field matching the authentication scheme used by the client.

invalid_grant
The provided authorization grant (e.g., authorization code, resource owner credentials) or refresh token is invalid, expired, revoked, does not match the redirection URI used in the authorization request, or was issued to another client.

unauthorized_client
The authenticated client is not authorized to use this authorization grant type.

unsupported_grant_type
The authorization grant type is not supported by the authorization server.

invalid_scope
The requested scope is invalid, unknown, malformed, or exceeds the scope granted by the resource owner.

Values for the "error" parameter MUST NOT include characters outside the set %x20-21 / %x23-5B / %x5D-7E.

error_description
OPTIONAL. Human-readable ASCII [USASCII] text providing additional information, used to assist the client developer in understanding the error that occurred. Values for the "error_description" parameter MUST NOT include characters outside the set %x20-21 / %x23-5B / %x5D-7E.

error_uri
OPTIONAL. A URI identifying a human-readable web page with information about the error, used to provide the client developer with additional information about the error. Values for the "error_uri" parameter MUST conform to the URI-reference syntax and thus MUST NOT include characters outside the set %x21 / %x23-5B / %x5D-7E.

The parameters are included in the entity-body of the HTTP response using the "application/json" media type as defined by [RFC4627]. The parameters are serialized into a JSON structure by adding each parameter at the highest structure level. Parameter names and string values are included as JSON strings. Numerical values are included as JSON numbers. The order of parameters does not matter and can
vary.

An example unsuccessful response:

HTTP/1.1 400 Bad Request
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
"error":"invalid_request",
"error_description":"Request was missing the client_id parameter.",
"error_uri":”https://tools.ietf.org/html/rfc6749”,
}

[bookmark: _Toc519847140]Client Authentification
A signed JWT that authenticates the client with the authorization server as described in RFC 7519. The content of the JWT is described in section “Client authentification”

jti
REQUIRED. The "jti" (JWT ID) claim provides a unique identifier for the JWT. The "jti" claim can be used to prevent the JWT from being replayed. The "jti" value is a case- sensitive string.

iss
REQUIRED. The "iss" (issuer) claim identifies the principal that issued the JWT. The processing of this claim is generally application specific. The "iss" value is a case-sensitive string containing a StringOrURI value.

sub
REQUIRED. The "sub" (subject) claim identifies the principal that is the subject of the JWT. The claims in a JWT are normally statements about the subject. The subject value MUST either be scoped to be locally unique in the context of the issuer or be globally unique. The processing of this claim is generally application specific. The "sub" value is a case-sensitive string containing a StringOrURI value.

aud
REQUIRED. The "aud" (audience) claim identifies the recipients that the JWT is intended for. Each principal intended to process the JWT MUST identify itself with a value in the audience claim.

exp
REQUIRED. The "exp" (expiration time) claim identifies the expiration time on or after which the JWT MUST NOT be accepted for processing. The processing of the "exp" claim requires that the current date/time MUST be before the expiration date/time listed in the "exp" claim. Some small leeway is provided, no more than a few minutes, to account for clock skew. Its value MUST be a number containing a NumericDate value.

nbf
REQUIRED. The "nbf" (not before) claim identifies the time before which the JWT MUST NOT be accepted for processing. The processing of the "nbf" claim requires that the current date/time MUST be after or equal to the not-before date/time listed in the "nbf" claim. Some small leeway is provided, no more than a few minutes, to account for clock skew. Its value MUST be a number containing a NumericDate value.

iat
REQUIRED. The "iat" (issued at) claim identifies the time at which the JWT was issued. This claim can be used to determine the age of the JWT. Its value MUST be a number containing a NumericDate value.

[bookmark: _Toc519847141]Obtaining user informations using OpenID
[bookmark: _Toc519847142]OpenId Connect
The primary extension that OpenID Connect makes to OAuth 2.0 to enable End-Users to be Authenticated is the ID Token data structure. The ID Token is a security token that contains Claims about the Authentication of an End-User by an Authorization Server when using a Client, and potentially other requested Claims. The ID Token is represented as a JSON Web Token (JWT) [JWT].
The following Claims are used within the ID Token for all OAuth 2.0 flows used by OpenID Connect:

iss
Issuer Identifier for the Issuer of the response. The iss value is a case sensitive URL using the https scheme that contains scheme, host, and optionally, port number and path components and no query or fragment components.

sub
Subject Identifier. A locally unique and never reassigned identifier within the Issuer for the End-User, which is intended to be consumed by the Client, e.g., 24400320 or AItOawmwtWwcT0k51BayewNvutrJUqsvl6qs7A4. It MUST NOT exceed 255 ASCII characters in length. The sub value is a case sensitive string.

aud
Audience(s) that this ID Token is intended for. It MUST contain the OAuth 2.0 client_id of the Relying Party as an audience value. It MAY also contain identifiers for other audiences. In the general case, the aud value is an array of case sensitive strings. In the common special case when there is one audience, the aud value MAY be a single case sensitive string.

exp
Expiration time on or after which the ID Token MUST NOT be accepted for processing. The processing of this parameter requires that the current date/time MUST be before the expiration date/time listed in the value. Implementers MAY provide for some small leeway, usually no more than a few minutes, to account for clock skew. Its value is a JSON number representing the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time. See RFC 3339 [RFC3339] for details regarding date/times in general and UTC in particular.

iat
Time at which the JWT was issued. Its value is a JSON number representing the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time.

auth_time
Time when the End-User authentication occurred. Its value is a JSON number representing the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time. When a max_age request is made or when auth_time is requested as an Essential Claim, then this Claim is REQUIRED; otherwise, its inclusion is OPTIONAL. (The auth_time Claim semantically corresponds to the OpenID 2.0 PAPE [OpenID.PAPE] auth_time response parameter.)

nonce
String value used to associate a Client session with an ID Token, and to mitigate replay attacks. The value is passed through unmodified from the Authentication Request to the ID Token. If present in the ID Token, Clients MUST verify that the nonce Claim Value is equal to the value of the nonce parameter sent in the Authentication Request. If present in the Authentication Request, Authorization Servers MUST include a nonce Claim in the ID Token with the Claim Value being the nonce value sent in the Authentication Request. Authorization Servers SHOULD perform no other processing on nonce values used. The nonce value is a case sensitive string.

ID Tokens MAY contain other Claims. Any Claims used that are not understood MUST be ignored.

[bookmark: _Toc519847143]Authorization code grant flow with openid
The authorization code grant type is used to obtain both access tokens and refresh tokens and is optimized for confidential clients.
Since this is a redirection-based flow, the client must be capable of interacting with the resource owner's user-agent (typically a web browser) and capable of receiving incoming requests (via redirection) from the authorization server.
Authorization code request
The client constructs the request URI by adding the following parameters to the query component of the authorization endpoint URI using the "application/x-www-form-urlencoded" format:

response_type
REQUIRED. Value MUST be set to "code".

client_id
REQUIRED. The client identifier as described in « Definitions ».

redirect_uri
REQUIRED. As described in « Definitions » under « redirection endpoint ».

scope
REQUIRED. The scope of the access request as described « Definitions » under « access token scope». Must at least contain “openid”

state
REQUIRED. An opaque value used by the client to maintain state between the request and callback. The authorization server includes this value when redirecting the user-agent back to the client. The parameter is used for preventing cross-site request forgery attacks.

nonce
REQUIRED. An opaque value used by the client to maintain state between the request and callback. The authorization server includes this value when redirecting the user-agent back to the client. The parameter is used for preventing cross-site request forgery attacks.

prompt=none
OPTIONAL. The Authorization Server MUST NOT display any authentication or consent user interface pages. An error is returned if an End-User is not already authenticated or the Client does not have pre-configured consent for the requested Claims or does not fulfill other conditions for processing the request. The error code will typically be login_required, interaction_required. This can be used as a method to check for existing authentication and/or consent. The Authorization request with this parameter cannot be used in an ajax call. It must be called from an hidden iframe.

The client directs the resource owner to the constructed URI using an HTTP redirection response, or by other means available to it via the user-agent.

For example, the client directs the user-agent to make the following HTTP request using TLS:

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz HTTP/1.1
Host: https://professionalservices.socialsecurity.be/REST/oauth/v3

The authorization server validates the request to ensure that all required parameters are present and valid.
If the request is valid, the authorization server authenticates the resource owner and obtains an authorization decision (by asking the resource owner or by establishing approval via other means).

When a decision is established, the authorization server directs the user-agent to the provided client redirection URI using an HTTP redirection response, or by other means available to it via the user-agent.
Authorization code response
If the resource owner grants the access request, the authorization server issues an authorization code and delivers it to the client by adding the following parameters to the query component of the redirection URI using the "application/x-www-form-urlencoded" format:

code
The authorization code generated by the authorization server. The authorization code expires shortly after it is issued to mitigate the risk of leaks. The client MUST NOT use the authorization code more than once. If an authorization code is used more than once, the authorization server denies the request and revokes (when possible) all tokens previously issued based on that authorization code. The authorization code is bound to the client identifier and redirection URI.

state
The exact value received from the client.

For example, the authorization server redirects the user-agent by sending the following HTTP response:

HTTP/1.1 302 Found
Location: https://client.example.com/cb?code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

The client MUST ignore unrecognized response parameters. The authorization code string size is left undefined by this specification. The client should avoid making assumptions about code value sizes.

Error response
If the request fails due to a missing, invalid, or mismatching redirection URI, or if the client identifier is missing or invalid, the authorization server SHOULD inform the resource owner of the error and MUST NOT automatically redirect the user-agent to the invalid redirection URI.

If the resource owner denies the access request or if the request fails for reasons other than a missing or invalid redirection URI, the authorization server informs the client by adding the following parameters to the query component of the redirection URI using the "application/x-www-form-urlencoded" format:

error
A single ASCII error code from the following:

invalid_request

The request is missing a required parameter, includes an invalid parameter value, includes a parameter more than once, or is otherwise malformed.

interaction_required

The Authorization Server requires End-User interaction of some form to proceed. This error MAY be returned when the prompt parameter value in the Authentication Request is none, but the Authentication Request cannot be completed without displaying a user interface for End-User interaction.

login_required

The Authorization Server requires End-User authentication. This error MAY be returned when the promptparameter value in the Authentication Request is none, but the Authentication Request cannot be completed without displaying a user interface for End-User authentication.

consent_required

The Authorization Server requires End-User consent. This error MAY be returned when the prompt parameter value in the Authentication Request is none, but the Authentication Request cannot be completed without displaying a user interface for End-User consent.

unauthorized_client

The client is not authorized to request an authorization code using this method.

access_denied

The resource owner or authorization server denied the request.

unsupported_response_type

The authorization server does not support obtaining an authorization code using this method.

invalid_scope

The requested scope is invalid, unknown, or malformed.

server_error

The authorization server encountered an unexpected condition that prevented it from fulfilling the request (needed because a 500 Internal Server Error HTTP status code cannot be returned to the client via an HTTP redirect).

temporarily_unavailable

The authorization server is currently unable to handle the request due to a temporary overloading or maintenance of the server (needed because a 503 Service Unavailable HTTP status code cannot be returned the client via an HTTP redirect).

Values for the "error" parameter MUST NOT include characters outside the set %x20-21 / %x23-5B / %x5D-7E.

error_description
Human-readable ASCII text providing additional information, used to assist the client developer in understanding the error that occurred.

error_uri
A URI identifying a human-readable web page with information about the error, used to provide the client developer with additional information about the error.

state
The exact value received from the client.

For example, the authorization server redirects the user-agent by sending the following HTTP response:

HTTP/1.1 302 Found
Location: https://client.example.com/cb?error=access_denied&state=xyz
Access token request
The client makes a request to the token endpoint by sending the following parameters using the "application/x-www-form-urlencoded" format with a character encoding of UTF-8 in the HTTP request entity-body:

grant_type
REQUIRED. Value MUST be set to "authorization_code".

code
REQUIRED. The authorization code received from the server.

redirect_uri
REQUIRED, the "redirect_uri" parameter included in the authorization request and the two values MUST be identical.

client_assertion_type
REQUIRED. Value must be set to “urn:ietf:params:oauth:client-assertion-type:jwt-bearer”

client_assertion
REQUIRED. A signed JWT that authenticates the client with the authorization server as described in RFC 7519. The content of the JWT is described in section “Client authentification”.

For example, the client makes the following HTTP request using TLS:

POST /token HTTP/1.1
Host: https://professionalservices.socialsecurity.be/REST/oauth/v3/token
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb&client_assertion_type=…&client_assertion=
Access token response
If the access token request is valid and authorized, the authorization server issues an access token and optional refresh token.
If the request client authentication failed or is invalid, the authorization server returns an error response.

access_token
The access token issued by the authorization server.

id_token
ID Token value associated with the authenticated session. Its content is described in section “OpenId Connect”

token_type
The type of the token issued. The token type is “Bearer”

expires_in
The lifetime in seconds of the access token. For example, the value "3600" denotes that the access token will expire in one hour from the time the response was generated. If omitted, the authorization server SHOULD provide the expiration time via other means or document the default value.

refresh_token
OPTIONAL. The refresh token, which can be used to obtain new access tokens using the same authorization grant as described in “Refreshing access token”

scope
OPTIONAL, if identical to the scope requested by the client; otherwise, REQUIRED.

An example successful response:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
"access_token":"2YotnFZFEjr1zCsicMWpAA",
“id_token”:” eyJhbGciOiJSUzI1NiJ9.eyJhdWQiOiJvYXV0aDI6dGVzdDppb… …”,
"token_type":"Bearer",
"expires_in":3600,
"refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA"
}

An example unsuccessful response:

HTTP/1.1 400 Bad Request
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
"error":"invalid_request",
"error_description":"Request was missing the client_id parameter.",
"error_uri":”https://tools.ietf.org/html/rfc6749”,
}
[bookmark: _Toc519847144]Implicit grant flow with openid
Implicit grant flow request
The client constructs the request URI by adding the following parameters to the query component of the authorization endpoint URI using the "application/x-www-form-urlencoded" format:

response_type
REQUIRED. OAuth 2.0 Response Type value that determines the authorization processing flow to be used, including what parameters are returned from the endpoints used. When using the Implicit Flow, this value is id_token token or id_token. The meanings of both of these values are defined in OAuth 2.0 Multiple Response Type Encoding Practices [OAuth.Responses]. No Access Token is returned when the value is id_token.

client_id
REQUIRED. The client identifier as described in « Definitions ».

redirect_uri
REQUIRED. As described in « Definitions » under « redirection endpoint ».

scope
REQUIRED. The scope of the access request as described « Definitions » under « access token scope». The scope must contain at least “openid” when using the response_type “id_token”.

state
REQUIRED. An opaque value used by the client to maintain state between the request and callback. The authorization server includes this value when redirecting the user-agent back to the client. The parameter is used for preventing cross-site request forgery attacks.

nonce
REQUIRED. String value used to associate a Client session with an ID Token, and to mitigate replay attacks. The value is passed through unmodified from the Authentication Request to the ID Token. Sufficient entropy MUST be present in the nonce values used to prevent attackers from guessing values.

prompt=none
OPTIONAL. The Authorization Server MUST NOT display any authentication or consent user interface pages. An error is returned if an End-User is not already authenticated or the Client does not have pre-configured consent for the requested Claims or does not fulfill other conditions for processing the request. The error code will typically be login_required, interaction_required. This can be used as a method to check for existing authentication and/or consent. The Authorization request with this parameter cannot be used in an ajax call. It must be called from an hidden iframe.

The client directs the resource owner to the constructed URI using an HTTP redirection response, or by other means available to it via the user-agent.

For example, the client directs the user-agent to make the following HTTP request using TLS:

GET /authorize?response_type=token&client_id=example:client&state=xyz HTTP/1.1
Host: https://professionalservices.socialsecurity.be/REST/oauth/v3

The authorization server validates the request to ensure that all required parameters are present and valid. The authorization server also verifies that the optional redirection URI (if present in request) to which it will redirect the access token matches a redirection URI registered by the client.

If the request is valid, the authorization server authenticates the resource owner and obtains an authorization decision (by asking the resource owner or by establishing approval via other means).

When a decision is established, the authorization server directs the user-agent to the provided client redirection URI using an HTTP redirection response, or by other means available to it via the user-agent.
Implicit grant flow response
If the resource owner grants the access request, the authorization server issues an access token and delivers it to the client by adding the following parameters to the fragment component of the redirection URI using the "application/x-www-form-urlencoded" format:

access_token
The access token issued by the authorization server.

token_type
The case insensitive type of the token issued as described in RFC6749 section 7.1.

id_token
ID Token value associated with the authenticated session. Its content is described in section “OpenId Connect”

expires_in
The lifetime in seconds of the access token. For example, the value "3600" denotes that the access token will expire in one hour from the time the response was generated.

scope
The scope of the access token which is omitted if identical to the scope requested by the client.

state
The exact value received from the client.

The authorization server will NOT issue a refresh token.

For example, the authorization server redirects the user-agent by sending the following HTTP response:

HTTP/1.1 302 Found
Location: http://example.com/cb#access_token=2YotnFZFEjr1zCsicMWpAA
 &state=xyz&token_type=example&expires_in=3600

The client MUST ignore unrecognized response parameters and avoid making assumptions about value sizes.

Error response
If the request fails due to a missing, invalid, or mismatching redirection URI, or if the client identifier is missing or invalid, the authorization server informs the resource owner of the error and does not automatically redirect the user-agent to the invalid redirection URI.

If the resource owner denies the access request or if the request fails for reasons other than a missing or invalid redirection URI, the authorization server informs the client by adding the following parameters to the fragment component of the redirection URI using the "application/x-www-form-urlencoded" format:

error
A single ASCII error code from the following:

invalid_request

The request is missing a required parameter, includes an invalid parameter value, includes a parameter more than once, or is otherwise malformed.

interaction_required

The Authorization Server requires End-User interaction of some form to proceed. This error MAY be returned when the prompt parameter value in the Authentication Request is none, but the Authentication Request cannot be completed without displaying a user interface for End-User interaction.

login_required

The Authorization Server requires End-User authentication. This error MAY be returned when the promptparameter value in the Authentication Request is none, but the Authentication Request cannot be completed without displaying a user interface for End-User authentication.

consent_required

The Authorization Server requires End-User consent. This error MAY be returned when the prompt parameter value in the Authentication Request is none, but the Authentication Request cannot be completed without displaying a user interface for End-User consent.

unauthorized_client

The client is not authorized to request an authorization code using this method.

access_denied

The resource owner or authorization server denied the request.

unsupported_response_type

The authorization server does not support obtaining an authorization code using this method.

invalid_scope

The requested scope is invalid, unknown, or malformed.

server_error

The authorization server encountered an unexpected condition that prevented it from fulfilling the request (needed because a 500 Internal Server Error HTTP status code cannot be returned to the client via an HTTP redirect).

temporarily_unavailable

The authorization server is currently unable to handle the request due to a temporary overloading or maintenance of the server (needed because a 503 Service Unavailable HTTP status code cannot be returned the client via an HTTP redirect).

Values for the "error" parameter MUST NOT include characters outside the set %x20-21 / %x23-5B / %x5D-7E.

error_description
Human-readable ASCII text providing additional information, used to assist the client developer in understanding the error that occurred.

error_uri
A URI identifying a human-readable web page with information about the error, used to provide the client developer with additional information about the error.

state
The exact value received from the client.

For example, the authorization server redirects the user-agent by sending the following HTTP response:

HTTP/1.1 302 Found
Location: https://client.example.com/cb#error=access_denied&state=xyz

[bookmark: _Toc519847145]Accessing userinfo endpoint
The UserInfo Endpoint is an OAuth 2.0 Protected Resource that returns Claims about the authenticated End-User. To obtain the requested Claims about the End-User, the Client makes a request to the UserInfo Endpoint using an Access Token obtained through OpenID Connect Authentication. These Claims are normally represented by a JSON object that contains a collection of name and value pairs for the Claims.
Userinfo request
The Client sends the UserInfo Request using either HTTP GET or HTTP POST. The Access Token obtained from an OpenID Connect Authentication Request MUST be sent as a Bearer Token, per Section 2 of OAuth 2.0 Bearer Token Usage [RFC6750].

The request use the HTTP GET method and the Access Token be sent using the Authorization header field.

The following is a non-normative example of a UserInfo Request:

GET /userinfo HTTP/1.1
Host: https://services.socialsecurity.be/REST/openIdConnect/v1
Authorization: Bearer SlAV32hkKG
Userinfo response
The UserInfo Claims are returned as the members of a JSON object. OpenID Connect Clients use scope values to specify what access privileges are being requested for Access Tokens. The scopes associated with Access Tokens determine what resources will be available when they are used to access OAuth 2.0 protected endpoints.

For OpenID Connect, scopes can be used to request that specific sets of information be made available as Claim Values.

OpenID Connect defines the following scope values that are used to request Claims:

profile
This scope value requests access to the End-User's default profile Claims, which are: name, family_name, given_name, middle_name, nickname, preferred_username, profile, picture, website, gender, birthdate, zoneinfo, locale, and updated_at.
email
This scope value requests access to the email and email_verified Claims.
address
This scope value requests access to the address Claim.
phone
This scope value requests access to the phone_number and phone_number_verified Claims.

The detail of these claims is described in section 5.1 of the OpenID specification.
Multiple scope values MAY be used by creating a space delimited, case sensitive list of ASCII scope values.

Error response
When an error condition occurs, the UserInfo Endpoint returns an Error Response as defined in Section 3 of OAuth 2.0 Bearer Token Usage [RFC6750]. (HTTP errors unrelated to RFC 6750 are returned to the User Agent using the appropriate HTTP status code.)
The following is a non-normative example of a UserInfo Error Response:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: error="invalid_token", error_description="The Access Token expired"
[bookmark: _Toc519847146]OAuth for desktop and mobile applications
This flow is custom made, as this use case is not specified in RFC 6749 (OAuth 2.0). It can be considered an extension to the standard OAuth 2.0 implicit flow.
The underlying rationale is that desktop and mobile applications are unable to securely store access tokens. We have thus introduced a vault service that serves the purpose of securely storing access tokens.

[image:]

(A) The application must initiate a transaction with the vault using the Initialize Transaction method. The response contains a unique transaction identifier ${id}.
(B) The application must open a browser (user-agent) to the authorization endpoint, as in standard OAuth 2.0, to obtain a grant from the resource owner on the specified scope.
(C) The resource owner grants access.
(D) The authorization server saves the access token in the vault (using the client’s user-agent) and displays a success message to the resource owner.
(E) While the user authenticates and grants access in the browser, the application must do active polling (since HTTP has no facilities for asynchronous jobs) to see if the token is available using the Get Access Token method.
(F) The client receives the access token when it is available.

[bookmark: _Toc519847147]Initialize transaction
Request
No input arguments are required.

The following is a non-normative example of a request for an initialization transaction of the token vault:

POST /api/vault/transactions HTTP/1.1
Host: https://oauthint.socialsecurity.be/oauth
Response
HTTP status code
201 Created.
id
Unique identifier of the newly created vault transaction.

The following is a non-normative example of a response for an initialization transaction of the token vault:

HTTP/1.1 201 Created
Content-Type: application/json

{
 "id": "XZyNvQAwr9"
}
[bookmark: _Toc519847148]Load access token into the token vault
The client constructs the request URI by adding the following parameters to the query component of the authorization endpoint URI using the "application/x-www-form-urlencoded" format. The request is a standard implicit grant flow request where the content of the state is the id received during the initialization of the token vault.

The client won’t get the response. The user-agent will add the necessary information to the vault.
[bookmark: _Toc519847149]Fetch access token from the token vault
Request
The request use the HTTP POST method and contains the following parameter:

id
	MANDATORY. Must be the transaction identifier created in the vault.

Response
Access_token
	MANDATORY. The access token issued by the authorization server.

id_token
	OPTIONAL. The id_token.

Error Response
202 Accepted
	The access token is not yet available. Clients SHOULD retry the request, e.g. after 2 seconds.

403 Forbidden
No authorization given for this transaction. The resource owner does not agree to the requested scope or is unable to agree to the requested scope. Clients SHOULD NOT try again, as this is likely a permanent issue.

404 Not Found
The transaction has expired or has never existed. Clients MUST restart the procedure (i.e. create a new transaction) if they wish to obtain an access token. Transactions expire 5 minutes after creation
[bookmark: _Toc519847150]Token introspection
The introspection endpoint is an OAuth 2.0 endpoint that takes a parameter representing an OAuth 2.0 token and returns a JSON [RFC7159] document representing the meta information surrounding the token, including whether this token is currently active.
The definition of an active token is dependent upon the authorization server, but this is commonly a token that has been issued by this authorization server, is not expired, has not been revoked, and is valid for use at the protected resource making the introspection call.
[bookmark: _Toc519847151]Introspection request
The protected resource calls the introspection endpoint using an HTTP POST [RFC7231] request with parameters sent as "application/x-www-form-urlencoded" data as defined in [W3C.REC-html5-20141028]. The protected resource sends a parameter representing the token along with optional parameters representing additional context that is known by the protected resource to aid the authorization server in its response.

token
REQUIRED. The string value of the token. For access tokens, this is the "access_token" value returned from the token endpoint defined in OAuth 2.0 [RFC6749], Section 5.1. For refresh tokens, this is the "refresh_token" value returned from the token endpoint as defined in OAuth 2.0 [RFC6749],

token_type_hint
OPTIONAL. A hint about the type of the token submitted for introspection. The protected resource MAY pass this parameter to help the authorization server optimize the token lookup. If the server is unable to locate the token using the given hint, it MUST extend its search across all of its supported token types. Values for this field are either “access_token” or “refresh_token”.

To prevent token scanning attacks, the endpoint MUST also require some form of authorization to access this endpoint using a separate OAuth 2.0 access token such as the bearer token described in OAuth 2.0 Bearer Token Usage [RFC6750].

The following is a non-normative example request:
	POST /introspect HTTP/1.1
	Host: https://services.socialsecurity.be/REST/oauth/v3/
	Accept: application/json
	Content-Type: application/x-www-form-urlencoded
	Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

	token=kbfqzpuibhvoqizfqvmn&token_type_hint=access_token
[bookmark: _Toc519847152]Introspection response
The server responds with a JSON object [RFC7159] in "application/
json" format with the following top-level members.

active
REQUIRED. Boolean indicator of whether or not the presented token is currently active. The specifics of a token's "active" state will vary depending on the implementation of the authorization server and the information it keeps about its tokens, but a "true" value return for the "active" property will generally indicate that a given token has been issued by this authorization server, has not been revoked by the resource owner, and is within its given time window of validity (e.g., after its issuance time and before its expiration time).

scope
OPTIONAL. A JSON string containing a space-separated list of scopes associated with this token, in the format described in Section 3.3 of OAuth 2.0 [RFC6749].

client_id
OPTIONAL. Client identifier for the OAuth 2.0 client that requested this token.

username
OPTIONAL. Human-readable identifier for the resource owner who authorized this token.

token_type
OPTIONAL. Type of the token as defined in Section 5.1 of OAuth 2.0 [RFC6749].

exp
OPTIONAL. Integer timestamp, measured in the number of seconds since January 1 1970 UTC, indicating when this token will expire, as defined in JWT [RFC7519].

iat
OPTIONAL. Integer timestamp, measured in the number of seconds since January 1 1970 UTC, indicating when this token was originally issued, as defined in JWT [RFC7519].

nbf
OPTIONAL. Integer timestamp, measured in the number of seconds since January 1 1970 UTC, indicating when this token is not to be used before, as defined in JWT [RFC7519].

sub
OPTIONAL. Subject of the token, as defined in JWT [RFC7519]. Usually a machine-readable identifier of the resource owner who authorized this token.

aud
OPTIONAL. Service-specific string identifier or list of string identifiers representing the intended audience for this token, as defined in JWT [RFC7519].

iss
OPTIONAL. String representing the issuer of this token, as defined in JWT [RFC7519].

jti
OPTIONAL. String identifier for the token, as defined in JWT [RFC7519].

This structure is extended with the principals attributes of the resource owner.

The authorization server MAY respond differently to different protected resources making the same request. For instance, an authorization server MAY limit which scopes from a given token are returned for each protected resource to prevent a protected resource from learning more about the larger network than is necessary for its operation.

The response MAY be cached by the protected resource to improve performance and reduce load on the introspection endpoint, but at the cost of liveness of the information used by the protected resource to make authorization decisions.

[bookmark: _Toc519847153][bookmark: _Toc478113834][bookmark: _Toc478114570]Environments
[bookmark: _Toc519847155][bookmark: _GoBack]Acceptation
The server url is https://services-acpt.socialsecurity.be/REST/
The different endpoints are:
· Back channel: https://services-acpt.socialsecurity.be/REST/oauth/v3/token
· Front channel: https://oauth2.acc.pub.socialsecurity.be/oauth2/authorize
· Introspect : https://services-acpt.socialsecurity.be/REST/oauth/v3/introspect
· Userinfo : https://services-acpt.socialsecurity.be/REST/openIdConnect/v1/userinfo

The expected audience is https://oauthacc.socialsecurity.be

[bookmark: _Toc519847156]Production
The server url is https://services.socialsecurity.be/
The different endpoints are:
· Back channel: https://services.socialsecurity.be/REST/oauth/v3/token
· Front channel: https://oauth2.prd.pub.socialsecurity.be/oauth2/authorize
· Introspect : https://services.socialsecurity.be/REST/oauth/v3/introspect
· Userinfo : https://services.socialsecurity.be/REST/openIdConnect/v1/userinfo

The expected audience is https://oauth.socialsecurity.be

[bookmark: _Toc519847157]External document references
· The OAuth 2.0 Authorization Framework : https://tools.ietf.org/html/rfc6749
· OpenID Connect specification : http://openid.net/connect/

1/32
[image: blauwe rechthoek]
32/32

OAUTH2 Cookbook 								Service offert par : ONSS
	[image: blauwe rechthoek]
image1.png
Authorization Code Grant Flow

Resource Owner

Client

Authorization Server

Resource Server

Authorization Code Request i

Needs client_id, [redirect_ur],
response_type=code[, scope,

state]

Login & Consent

<

Exchange Code for Access Token

Authorization Code Response,

Needs assertion, redirect_uri

grant_type=authorization_code, code

Access Token + Refresh Token

Response with Data

i

Resource Owner

Authorization Server

Resource Server

image2.png
Implicit Grant Flow

Resource Owner

Javascript Appiication | | Authorization Server

Resource Server

Access Token Request , |

Needs client_id
response_ty|
[scope], state

token,

i Access Token
|2

100]

2

Call AP uith Acsess Tokén
|- Response with Data

Resource Owner

Javascript Appiication | | Authorization Server

Resource Server

image3.png
Client Credentials Grant Flow

Authorization Server

Resource Server

Needs grant_type=client_credentials.

assertion], scope]

Client
(Resource Owner)

Authorization Server

Resource Server

image4.emf
sd Implicitflow (Mobile app)

(D) Save token to vault

Vault

(F) Access token

(A) init transaction /api/vault/transactions

(E) POST token /api/vault/transactions/tokens

User-agent

(C) Authenticate user and Grant

(B) /authorize?client_id=xxx&state=${id}&scope=xxx yyy

Resource Owner

Client Authorization

server

(A) ${id}

image5.png
Nig
lo\‘

image7.PNG
Yo

N

£ Sécurité sociale

image6.png

